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The flow in a stationary open cylinder driven by the constant rotation of the bottom
endwall is unstable to three-dimensional perturbations for sufficiently large rotation
rates. The bifurcated state takes the form of a rotating wave. Two distinct physical
mechanisms responsible for the symmetry breaking are identified, which depend on
whether the fluid depth is sufficiently greater or less than the cylinder radius. For deep
systems, the rotating wave results from the instability of the near-wall jet that forms
as the boundary layer on the rotating bottom endwall is turned into the interior.
In this case the three-dimensional perturbations vanish at the air/water interface.
On the other hand, for shallow systems, the fluid at radii less than about half the
cylinder radius is in solid-body rotation whereas the fluid at larger radii has a strong
meridional circulation. The interface between these two regions of flow is unstable
to azimuthal disturbances and the resulting rotating wave persists all the way to the
air/water interface. The flow dynamics are explored using three-dimensional Navier–
Stokes computations and experimental results obtained via digital particle image
velocimetry. The use of a flat stress-free model for the air/water interface reproduces
the experimental results in the deep system but fails to capture the primary instability
in the shallow system, even though the experimental imperfections, i.e. departures from
a perfectly flat and clean air/water interface, are about the same for the deep and
the shallow systems. The flat stress-free model boundary conditions impose a parity
condition on the numerical solutions, and the consideration of an extended problem
which reveals this hidden symmetry provides insight into the symmetry-breaking
instabilities.

1. Introduction
Flat gas/liquid interfaces are often modelled as stress-free (shear-free) (e.g. Hunt

1984; Pan & Banerjee 1995; Walker, Leighton & Garza-Rios 1996; Handler et al. 1999;
Teixeira & Belcher 2000), and this idealization is also very common in convection
models (e.g. Chandrasekhar 1961; Busse & Bolton 1984; Goldstein et al. 1993; Scheel
& Seehafer 1997). However, this idealization is never realized physically, even in
well-controlled laboratory situations, for a variety of reasons. The free surface is
impossible to clean perfectly, and even small amounts of contaminants can impart
stress, particularly for air/water interfaces (Davies & Rideal 1963; Scott 1975). As
well, the Froude number is not identically zero, so small deformations away from flat
are always present. Nevertheless, in many circumstances modelling the free surface
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as flat and stress-free is appropriate. One of the central issues to be addressed in
this paper is the impact of imperfections on the ideal boundary condition. This is
motivated by our attempts to model laboratory experiments with a flat stress-free
interface boundary condition. We have been successful in some parameter regimes
but not in others, yet in all the parameter regimes the surface was cleaned to the same
extent and the Froude number was of the same order, i.e. the level of imperfection
was about the same. What we shall demonstrate here is that using a flat stress-free
boundary condition implies a hidden symmetry in the problem. The interface in
the model is a reflection symmetry plane, so that the computational model has a
Z2 symmetry. The experiments, of course, are not restricted to such an equivariant
system because of the imperfections. When the imperfections are small, the basic
state is modelled well with the ideal flat stress-free condition. The problem may arise
when the basic state becomes unstable, as parameters are varied. If the most unstable
mode (in the system without the hidden Z2 symmetry imposed) is invariant to the Z2

symmetry, then the ideal condition continues to be appropriate. However, if the bifur-
cating mode is not Z2 invariant, then a model with the hidden Z2 symmetry imposed
results in dynamics that are not in accord with those in a system where the hidden
symmetry is not imposed (e.g. the physical experiment).

We investigate this problem in a well-controlled laboratory experimental setting,
consisting of flow in a stationary circular cylinder, driven by the constant rotation
of the bottom endwall, with the upper surface being an essentially flat stress-free
air/water interface. As well, we study computational models of the full three-
dimensional Navier–Stokes equations in the extended problem consisting of a cylinder
of twice the length with both endwalls co-rotating. The mid-plane is a reflection
boundary that corresponds to a flat, stress-free interface. Computationally, we study
the dynamics in the full problem as well as in various subspaces where certain
symmetries are imposed.

This particular flow has previously been studied experimentally, the most com-
prehensive studies being the PhD thesis of Spohn (1991) and subsequent publications
(Spohn & Daube 1991; Spohn, Mory & Hopfinger 1993, 1998). The main focus
of those studies was the characterization of the basic state. The experiments used
tap water and no attempt was made to reduce the effects of surface-active agents
(surfactants). In Spohn & Daube (1991), a simple model to numerically account for
surfactant effects was introduced, in response to the observation that the radial velocity
at the surface vanished in the experiment, whereas in the stress-free computations
this velocity component was non-zero. In Spohn et al. (1993) and Spohn et al. (1998)
it is claimed that since the azimuthal component of the surface velocity was non-
zero, surface viscosity effects and azimuthal stresses were negligible. This however
says nothing about the radial stresses in their experiment, which were in fact large
enough to bring the radial component of velocity to rest. In these axisymmetric flows,
surfactants tend to be swept in radially by the surface flow, causing a signifigant
radial concentration gradient which leads to a radial gradient in surface tension (i.e.
a Marangoni stress) that opposes the radial surface flow. In the azimuthal direction,
there is no such stress as the flow is axisymmetric. In a similar flow, Lopez & Hirsa
(2000) and Hirsa, Lopez & Miraghaie (2001, 2002a) have shown that with insoluble
surfactant monolayers, the radial stress can be comparable to that due to a rigid
no-slip wall, and yet if the surface shear viscosity of the monolayer system is small,
the azimuthal velocity is virtually indistinguishable from that at a stress-free interface.

Hirsa, Lopez & Miraghaie (2002b) have performed experiments in a relatively deep
cylinder flow driven by a rotating endwall, taking care to have as clean an air/water
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interface as possible. Here, we shall compare computations using the ideal stress-free
condition with these experiments, and show agreement for the primary instability of
the basic state. More extensive experiments were done by Miraghaie (2002), many of
which we shall compare with here. For shallow systems however, we find that the
model with the ideal stress-free condition fails to capture the primary instability, and
we shall show that relaxing the hidden Z2 symmetry condition provides insight into
the problem.

2. Basic equations, symmetries and numerical method
In order to deal explicitly with the hidden Z2 symmetry imposed by the ideal flat

stress-free condition, we shall consider the extended problem of flow in a cylinder of
length 2H and radius R, driven by the co-rotation of both rigid endwalls at constant
angular speed Ω . Using R as the length scale and 1/Ω as the time scale, there are
two non-dimensional governing parameters:

Reynolds number: Re= ΩR2/ν,

aspect ratio: Γ = H/R,

where ν is the kinematic viscosity of the fluid.
The equations governing the flow are the Navier–Stokes equations together

with initial and boundary conditions. In cylindrical coordinates, (r, θ, z), the non-
dimensional velocity vector is u = (u, v, w). The domain is (r, θ, z) ∈ [0, 1] × [0, 2π] ×
[−Γ, Γ ]. The boundary conditions are no-slip for all solid walls and the essential pole
conditions at the axis (see Lopez, Marques & Shen 2002, for details).

The three-dimensional Navier–Stokes equations are solved numerically using a
Galerkin spectral scheme for spatial discretization and a second-order projection
scheme for time evolution. Legendre polynomial bases are used in the radial and
axial directions and a Fourier basis is used in the periodic azimuthal direction. The
details of the numerical method are given in Lopez et al. (2002). For the computed
results presented here, up to 48 Legendre modes in r , 64 Legendre modes in z, 32
Fourier modes in θ , and a time-step of 2 × 10−2 have been used. The initial condition
is either a state of rest or the continuation of a solution from one point in the
(Re, Γ )-parameter space to a nearby point in that parameter space.

The governing equations and boundary conditions are equivariant to rotations Rφ ,
of arbitrary angle φ, around the cylinder axis, and to a specular reflection K about
the mid-plane z =0. Their action on the velocity vector u is

Rφ(u, v, w)(r, θ, z) = (u, v, w)(r, θ + φ, z), (2.1)

K(u, v, w)(r, θ, z) = (u, v, −w)(r, θ, −z). (2.2)

Since Rφ and K commute, the symmetry group of the problem is G = SO(2) × Z2. The
basic state, i.e. the unique solution of the Navier–Stokes equations for small values
of Re, is steady and invariant to the group G. The problem with a flat stress-free
interface in a cylinder of length H driven by the rotation of the bottom endwall is
simply the restriction of the extended problem to a Z2-invariant subspace. With the
spectral method used, this restriction is simply accomplished by setting to zero all
the odd Legendre polynomials in the z-basis for u and v and all the even Legendre
polynomials in the z-basis for w. This enforces the condition

uz = vz = w =0, (2.3)
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Figure 1. Schematic of the flow apparatus; computed streamlines (left meridional half-plane)
and vortex lines (right meridional half-plane) of the steady axisymmetric basic state at
Re= 1900 and Γ = 2 are shown inside the cylinder. The letters indicate: (a) stationary cylinder
retainer ring and alignment screws, (b) stationary cylinder, (c) water container (cylinder),
(d) rotating bottom, (e) silicone sealant, (f ) rotating bottom alignment screws, (g) rotating
bottom retainer and belt pulley, (h) ball bearing, (i) drive belt, (j ) motor pulley and flywheel,
(k) stepper motor, and (l) DPIV camera.

at the mid-height plane (z = 0), which means that on this plane there is no flow-
through (maintaining it flat) and there are no tangential stresses.

We shall consider the dynamics in a number of subspaces: (i) the SO(2) × Z2-
invariant subspace, where all solutions are axisymmetric and reflection symmetric
about z =0; (ii) the SO(2)-invariant subspace, where all solutions are axisymmetric
but the mid-plane (z = 0) need not be a symmetry plane; (iii) the Z2-invariant
subspace, where the mid-plane (z = 0) is a symmetry plane but the solutions need not
be axisymmetric; and finally (iv) the full problem where no symmetry conditions are
imposed.

3. Experimental technique
The flow in the stationary cylinder of aspect ratio (depth to radius) Γ with

the bottom endwall rotating at Ω rad s−1 and a free surface was studied using the
apparatus depicted in figure 1. The bottom consisted of optical-quality glass (flat to
within ±0.0025 cm) which was retained by a precision ball bearing. The glass bottom
was attached to the ball bearing using a retaining cylinder with a compliant silicone
sealant, and three fine-pitch alignment screws were utilized to make the rotation
plane true to within ±0.001 cm (at R). The bearing was press-fitted into a 2.5 cm
thick polycarbonate plate, which was mounted on an optical table. Several lead
bricks (47 kg total) were attached to the polycarbonate plate to reduce any vibrations.
The bottom was rotated via a drive belt and a stepper motor fitted with a 10 cm
diameter, 5 cm long brass flywheel. The combination of the drive belt, heavy flywheel,
and micro-stepping (approximately 41 000 micro-steps per revolution of the bottom),
made the rotation of the bottom relatively free from vibrations.
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Two cylinders were made of precision bore glass (Ace Glass, Trubore) with inner
diameter of 5.006 ± 0.006 cm. For the experiments with a deep cylinder, the glass
cylinder was cut to a height of 5.00 ± 0.01 cm (Γ =2), and for experiments with a
shallow cylinder it was cut to a height of 0.66 ± 0.03 cm (Γ = 0.26). The cylinder was
lightly press-fitted into a retainer, machined from acrylic, that contacted the cylinder
at three points to minimize optical blockage. The retainer was held by three fine-pitch
screws onto a cover plate (not shown in the figure), allowing the cylinder to be made
perpendicular to the rotating bottom. The gap between the cylinder and the rotating
bottom was set to 0.007 ± 0.002 cm.

The reproducibility of the flow measurements using this relatively precise apparatus
appeared to depend on three factors: (i) the alignment of the cylinder and the centre
of rotation of the glass bottom, (ii) the flatness of the air/water interface, and (iii) the
absence of surface-active contaminants. The cylinder was centred to within 0.006 cm
of the bottom’s centre of rotation, using alignment screws on the cover plate. In order
to pin the contact line and achieve a flat free surface, the top rim of the cylinder was
coated with a thin paraffin film (from a dilute solution in hexane). Thus, by filling the
system up to the rim, a flat interface (to within ±0.005 cm) could be obtained. The
paraffin coating of the glass rim did not contaminate the water in the system.
The water in the system was contained by a glass cylinder (nominal inner diameter
of 11.1 cm, wall thickness of 0.3 cm, cut to a height 0.6 cm larger than the stationary
cylinder) with its grounded bottom cemented from the outside to the rotating bottom.
The system was filled with double-distilled water (at 22 ± 0.5 ◦C, where the kinematic
viscosity ν = 0.00957 cm2 s−1), and seeded with 21 micron polystyrene particles (Duke
Scientific, 7520A) for the digital particle image velocimetry (DPIV) measurements.
The procedure described in Hirsa et al. (2001) was followed for cleaning the particles.
The details of the DPIV system can also be found in Hirsa et al. (2001). The purity
of the surface of the seeded water was checked by surface tension measurements
during rapid compression in a Langmuir trough. The surface was aspirated prior to
each experiment in the open cylinder.

4. Base flow
In the absence of imperfections, the system with the ideal flat stress-free boundary

is SO(2) invariant, i.e. invariant to arbitrary rotations about the axis, and we have
taken much care to minimize imperfections in the experimental apparatus. As such,
the basic flow state is axisymmetric and steady. In the extended problem, the basic
state is also Z2 invariant. This means that u and v are even functions of z and that
w is an odd function of z. The meridional structure (i.e. in the r- and z-directions) of
the basic state, however, is not trivial. It consists of a boundary layer on the rotating
bottom disk that is turned into the interior by the stationary cylinder, forming a shear
layer that has a jet-like velocity profile in the azimuthal direction. Inside the cylinder
in figure 1, the streamlines (left) and vortex lines (right) projected onto the meridional
plane for a basic state at Re = 1900 and Γ = 2 are shown; the structure of the shear
layer is apparent. The flow has an overturning nature in the meridional plane, as
well as a recirculation zone at the axis, as is characteristic of these swirling flows
due to centrifugal effects associated with the overturning flow attempting to bring
high-angular-momentum fluid in towards the axis. In this example, the meridional
flow stagnates on the free surface to form the recirculation. At lower Re, it tends to
stagnate on the axis. Detailed accounts of the changes in the structure of the basic
state with parameter variation are presented in Spohn et al. (1993), Valentine &
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Figure 2. Computed basic state at Γ = 0.25, Re =1450, showing streamlines and vortex lines
in a meridional plane (r, z) ∈ [0, 1] × [−Γ, Γ ]. Contour levels are spaced quadratically; solid
(dotted) contours correspond to positive (negative) levels.

Jahnke (1994), Lopez (1995) and Brons, Voigt & Sorensen (2001). Here, we shall
show two examples with different aspect ratios Γ that illustrate the primary features
that dominate. These features are:

(a) solid-body-rotation of the inner core region, predominately for small Γ ;
(b) radial jet of angular momentum at the mid-plane (z =0);
(c) meridional overturning flow in the outer radial part of the flow and the

development of an internal jet-like shear layer close to the cylinder wall.
For the base flow, it is often convenient to describe the axisymmetric solutions in

terms of the streamfunction, ψ , the axial component of angular momentum, α, and
the azimuthal component of the vorticity, η. These are related to the velocity field as

u = (u, v, w) = (−ψz, α, ψr)/r and ∇ × u = (−αz, rη, αr )/r. (4.1)

In the same way as contours of ψ give the projection of the streamsurfaces onto
a meridional plane (i.e. the streamlines), contours of α give the vortex lines in the
meridional plane. For a Z2-invariant state, ψ is an odd function of z and α is even.

For shallow systems (e.g. Γ = 0.25, as shown in figure 2), the basic state has
some very distinctive features. The streamlines and vortex lines clearly show that
for r < 0.4 (for this Γ = 0.25 example), the flow is essentially in solid-body-rotation,
with zero meridional motion (ψ ∼ 0) and the vortex lines aligned with the rotation
axis (and α = rv ∝ r2, as indicated in the figure where the contour levels are spaced
quadratically). In contrast, for r > 0.4, there is significant meridional flow as a con-
sequence of the stationary cylinder wall at r = 1. The discontinuities between the
stationary cylinder and the rotating endwalls result in all of the vortex lines that
originate on the rotating walls for r > 0.6 terminating at the discontinuities. This
results in significant vortex line bending which induces the secondary meridional flow,
as indicated by the streamlines. This meridional flow consists of three main features.
First, there are the boundary layers on the rotating endwalls for r > 0.5, which advect
a significant amount of angular momentum out to larger radii. These boundary layers
have structure which is described well over most of the disk between about r =0.5 and
1 by the von Kármán similarity solution for boundary layer flow on a rotating disk
(Schlichting & Kestin 1979). The stationary cylinder at r = 1 turns these endwall layers
into the interior, inclined at a small angle away from the cylinder wall, producing the
second prominent feature. This second feature is an internal shear layer that has a
jet-like profile in the azimuthal direction and strong shear in the meridional direction;
we shall refer to this layer as the wall jet-shear layer. Both of these layers (the
boundary layers on the endwalls and the wall jet-shear layer) are characteristic of the
often studied flow in a cylinder with one stationary endwall and one rotating endwall
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Figure 3. Computed basic state at Γ = 2.0, Re= 1900, showing streamlines and vortex lines
in a meridional plane (r, z) ∈ [0, 1] × [−Γ, Γ ]. Contour levels are spaced quadratically; solid
(dotted) contours correspond to positive (negative) levels.

(e.g. Escudier 1984; Lopez 1990; Stevens, Lopez & Cantwell 1999; Marques & Lopez
2001; Marques, Lopez & Shen 2002; Blackburn & Lopez 2002). The present problem
with two co-rotating endwalls has a third characteristic feature. The boundary layer
on the stationary cylinder has flow swirling axially towards the mid-plane (z = 0),
carrying some angular momentum from both rotating endwalls. At z = 0, these two
boundary layer flows collide and separate, forming a rather intense internal layer
which has jet-like profiles in both the meridional and azimuthal directions. This jet
stagnates radially (the azimuthal velocity remains non-zero) as it collides with the
region in solid-body-rotation, at about r = 0.5. The dynamics associated with a similar
internal layer at z = 0 have recently been investigated for a related problem, where
the flow in the stationary cylinder is driven by the exact counter-rotation of the two
endwalls (Nore et al. 2003). In that problem, there is no region of solid-body rotation
as the fluid in the top half rotates in the opposite sense to that in the bottom half.

On increasing Γ to Γ = 2 (see figure 3), the region of solid-body rotation near
the axis is eliminated. Now, there is meridional circulation (non-zero ψ) throughout
the cylinder. The region near the axis is quasi-static, consisting of weak recirculation
zones that are either attached to the z = 0 plane or to the axis, depending on Re
and Γ . These recirculation zones have been visualized experimentally and associated
with vortex breakdown bubbles (e.g. Spohn et al. 1993). In these deep systems (i.e.
large Γ ), the wall jet-shear layers are dynamically important and have a structure
very similar to those found in stationary cylinder flows of half the length with one
stationary endwall and one rotating endwall.

For sufficiently small Re, irrespective of Γ , the basic state is stable. As Re is
increased, the basic state loses stability via a variety of Hopf bifurcations, depending
on Γ and to which subspace the flow is restricted. The two sample basic states shown
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in figures 2 and 3 are at Re values just below critical for each Γ in the full problem
(i.e. with no imposed symmetry). In all of the subspaces considered for this problem,
the primary bifurcation from the basic state over an extensive range of Γ is found
to be of Hopf type. This is also the case in the more widely studied case with one
rotating and one stationary endwall, where Gelfgat, Bar-Yoseph & Solan (2001) have
shown via three-dimensional stability analysis that for Γ ∈ [1, 4] all bifurcations from
the basic state are of Hopf type.

5. Hopf bifurcations from the base flow
Given that the primary instability of the basic state leads to a limit cycle, γ , via a

Hopf bifurcation, we now determine what are the possible symmetries of such a limit
cycle using group theoretic considerations.

For a generic Hopf bifurcation, a pair of complex-conjugate eigenvalues, ±iω0,
cross the imaginary axis as a parameter µ is varied through µ = 0. According to the
centre manifold theorem, there exists a two-dimensional centre manifold Mc and a
normal form on it describing the dynamics of the system in a neighbourhood of the
bifurcation point (Marsden & McCracken 1976). Using the complex amplitude, A, of
the eigenvector corresponding to the eigenvalue iω0 to parameterize Mc, the normal
form has the form

Ȧ = iω0A + P (A, Ā, µ), (5.1)

where the polynomial function, P , satisfies

P (e−iω0tA, eiω0t Ā, µ) = e−iω0tP (A, Ā, µ), (5.2)

for all t , from which the standard normal form for the Hopf bifurcation (to third
order) is easily derived:

Ȧ= A(iω0 + µ − a|A|2). (5.3)

The symmetries of the system impose additional conditions on the normal form. If
the governing equations are equivariant with respect to G, then so is the normal form.
The action of G on the amplitude A is (see Iooss & Adelmeyer 1998, for details)

RφA= eimφA, KA = sA, (5.4)

where m is an integer and s = ± 1. When m =0, the eigenvector is SO(2)-invariant,
i.e. axisymmetric; when s = + 1, the eigenvector is Z2-invariant.

The additional conditions imposed by the symmetry group G on P are

P (eimφA, e−imφĀ, µ) = eimφP (A, Ā, µ), (5.5)

P (sA, sĀ, µ) = sP (A, Ā, µ). (5.6)

However, since these conditions can be obtained from (5.2), i.e. letting t = −mφ/ω0

gives (5.5), and letting t = π/ω0 gives (5.6) when s = −1, there are no additional
restrictions on the normal form due to the symmetry group G = SO(2) × Z2. The
action of G on the periodic bifurcated solution γ is the following: if m =0, SO(2)
leaves every point of γ invariant. If m �=0, the action of Rφ on γ is equivalent to a
time translation t → t + mφ/ω0, and γ is a rotating wave with precession frequency
ωp = ω0/m. If s = 1, Z2 leaves every point of γ invariant. If s = −1, the action of the
z-flip K is equivalent to a time translation of π/ω0, which is half the period of γ .

The bifurcated limit cycle γ , as a set, is G-invariant, but the individual points on
γ (the solution at a given time), are only invariant to a subgroup ∆ of G, called
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m s ∆ G/∆

I 0 +1 SO(2) × Z2 1
II 0 −1 SO(2) Z2

III �=0 +1 Zm × Z2 SO(2)
IV �=0 −1 Z2m SO(2)

Table 1. The symmetries of the bifurcated orbit γ .

the group of spatial symmetries of the bifurcated periodic solution. That is, taking
a point on γ at a particular time, and applying the symmetry group G, generally
does not leave the point invariant, but results in another G-conjugate point on γ .
If, instead, the subgroup ∆ is applied to the point, the point remains invariant. The
remaining elements of G are called spatiotemporal symmetries of γ , and their action
is equivalent to a specified time translation along the orbit. The quotient group, G/∆,
is always either SO(2) or Zm, except if ∆ = G and then G/∆ = 1, the trivial group
consisting only of the identity. See Lamb & Melbourne (1999) for a much more
general and complete discussion of the symmetries of periodic solutions and their
possible bifurcations. Here Zm, also called Cm, is the cyclic group of m elements.

There are four different possibilities for the symmetries of the bifurcated orbit γ , as
shown in table 1, where Zm is the discrete group of rotations generated by R2π/m, and
Z2m is generated by KRπ/m; the notation Zm(R2π/m) and Z2m(KRπ/m) is often used to
indicate simultaneously the group and the corresponding generator(s).

In our problem, we have found Hopf bifurcations leading to limit cycles with
symmetries corresponding to all four cases. The axisymmetric Hopf bifurcations
(types I and II) have been previously studied by restricting the computations to an
SO(2)-invariant subspace (Valentine & Jahnke 1994; Lopez 1995; Brons et al. 2001),
but we have found in this present investigation that these take place at Re much larger
than the Re at which the basic state undergoes non-axisymmetric Hopf bifurcations
(types III and IV). It is on these non-axisymmetric Hopf bifurcations that we focus
here.

6. Primary instabilities
6.1. Deep system: Γ = 2.0

6.1.1. Experimental findings

Figure 4 shows the axial vorticity and horizontal velocity at a depth z = −0.24Γ

(i.e. 0.24Γ below the free surface at z = 0), measured using DPIV. A horizontal laser
light sheet of 0.1 cm (or 0.02H ) thickness was utilized in this measurement. The figure
shows that at Re= 1900 the flow is essentially axisymmetric. DPIV measurements
at various depths (not shown) were taken to verify the axisymmetry of the flow.
The recirculation zone in the centre (see the computed streamlines in the meridional
plane shown in figure 3) is delineated by the inner radius of the annular region
with large axial vorticity (darkest contour level). The boundary layer on the cylinder
(negative axial vorticity) is visible in the four corners of the plot. The slightly wavy
pattern in some of the vorticity contours in the figure is an inherent characteristic of
DPIV measurements of a vortex using a rectangular array and is due to quantization.
For Re > 1900, the flow becomes non-axisymmetric, with a predominant azimuthal
wavenumber m =4.
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Figure 4. Measured axial vorticity (contours) and horizontal velocity (arrows), obtained via
DPIV in a deep system with Γ = 2, at depth z = −0.24Γ , for a steady axisymmetric basic state
at Re =1900.

To explore the nature of the symmetry breaking leading to the rotating wave with
azimuthal wavenumber m =4, RW4, we shall examine how its amplitude varies with
Re. As a measure of the amplitude, we use the area integral of the perturbation
axial vorticity squared, 〈ω2

p〉. The perturbation axial vorticity, ωp , is determined by
subtracting the azimuthally averaged axial vorticity from the local axial vorticity, and
is non-dimensionalized by Ω . The perturbation axial vorticity measured at a depth
z = −0.24Γ is shown in figure 5. These data were obtained at Re= 2200. A rotating
wave with dominant mode m = 4 is evident. It should be noted that the positive
patches of ωp (solid line contours) near 5 and 11 o’clock appear stronger than the
two positive patches at 2 and 8 o’clock. This is probably due to their proximity to
the boundaries of the measurement region and other measurement uncertainties, but
could also be indicative of an m = 2 component of the flow. The negative patches
(broken line contours) of vorticity observed near 1, 4, 7, and 10 o’clock are indicative
of a mode m =4 wave. Vorticity determined from DPIV measurements is inherently
noisier than velocity measurements and perturbation vorticity is even more difficult
to determine accurately. Further complicating the experimental results is the fact that
the measurements have to be phase averaged to reduce the noise to an acceptable
level, and this phase averaging naturally biases the results. The area integration was
performed only up to r ≈ 0.87 in order to minimize error due to DPIV noise near the
wall at r = 1. Due to the Cartesian nature of the vorticity DPIV measurements, the
data had to be transformed into polar coordinates prior to averaging in the azimuthal
direction. The algorithm for transforming the Cartesian data into polar coordinates



Symmetry breaking in free-surface cylinder flows 109

Figure 5. Measured perturbation axial vorticity, ωp , at Re= 2200, Γ =2.0, at depth
z = −0.24Γ . The DPIV data are phase-averaged over π/2 in θ .

Figure 6. Variation of measured 〈ω2
p〉 with Re for Γ = 2.0. The dotted line represents the

baseline noise level in the DPIV measurements.

involved a single parameter, N , giving the number of points in the Cartesian data set
that are interpolated into a discrete annular grid (details are provided in Miraghaie
2002).

Figure 6 shows the variation of the squared perturbation axial vorticity, averaged
over the disk (r, θ ) ∈ [0, 0.87) × (0, 2π] at depth z = −0.24Γ , 〈ω2

p〉, with Re. The dotted

line in the figure represents the base DPIV noise level. For Re > 2000, 〈ω2
p〉 clearly
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rises above the DPIV noise in an almost linear fashion, indicative of a supercritical
Hopf bifurcation. The precession of the m = 4 structure does not vary much with Re,
and is finite at onset (Hirsa et al. 2002b). The data shown in the figure used N = 36
to determine 〈ω2

p〉. We have found that varying N from 4 to 64 changes 〈ω2
p〉 by

less than ±10%. However, the extrapolated value of Re for the supercritical Hopf
bifurcation (approximately 2000) was found to be independent of N for the range of
values considered.

The structure of the dominant mode (m = 4) observed in the experiments at
Re= 2500 is shown in figure 7, consisting of contours of axial vorticity, solid (broken)
lines representing positive (negative) values and the darkest shade representing the
extremums, together with vectors representing the projection of the velocity onto the
horizontal planes at depth z as indicated. The data were obtained by phase-averaging
the DPIV measurements at each 1/4 rotation of the wave over a period of 100 s in
order to reduce the random DPIV noise. Note, the extent of the measurement region
for depths z = 0 and z = −0.08Γ was reduced due to blockage of the laser light sheet
by the cylinder retaining tabs (see figure 1). The flow in the inner region remains
essentially axisymmetric, although there is a hint of an m =2 component at depth
z = −0.16Γ for small r . The data show that the m = 4 rotating wave is strongest
at a small distance below the free surface (z ∈ [−0.16Γ, −0.40Γ ]) and at r ∼ 0.7,
indicating that the instability is of the jet-shear layer that is produced as the shear
layer that forms on the rotating bottom is turned into the interior by the stationary
cylinder (see the description of this for the basic state in § 4). This same physical
mechanism breaking the SO(2) symmetry of the jet-shear layer has been identified in
three-dimensional computations for the case of a stationary rigid top (Marques &
Lopez 2001; Blackburn & Lopez 2002).

All of the data points for Re > 2000 shown in figure 6 are for cases that we
have identified as having dominant mode m =4 for this geometry (Γ = 2.0). However,
occasionally, in some experiments we have observed other rotating wave states, namely
modes m =3 and m =5, as shown in figure 8. These are transient states (eventually
an m =4 state is established) and their occurrence appears to depend on departures
from a flat free surface, surface contamination, and initial flow conditions.

The profiles of radial and azimuthal velocity measured at the free surface (z = 0)
are presented in figure 9 for Re = 2500 and Γ = 2. These data were obtained via
DPIV and were averaged in time. The finite radial velocity for r > 0.2 (directed in
towards r = 0) confirms that the surface is essentially clean; contaminants would have
been swept in towards r = 0, setting up a concentration gradient and hence a surface
tension gradient leading to a Marangoni stress that would have stagnated the radial
flow (Lopez & Hirsa 2000; Hirsa et al. 2001).

6.1.2. Numerical results

Previous axisymmetric computations (Lopez 1995; Brons et al. 2001) have
determined that the basic state undergoes a supercritical axisymmetric Hopf
bifurcation at Re> 2500, i.e. at much larger Re than that for the symmetry-breaking
Hopf bifurcation to a rotating wave we have observed experimentally. We have
repeated the computations here, restricted to an SO(2) × Z2 subspace, and have
found that this Hopf bifurcation occurs at Re ≈ 2660 for Γ = 2; the symmetry of
the bifurcated state corresponds to type I in the classification given in table 1. Our
experimental observations (and computations not restricted to symmetric subspaces,
detailed below) are consistent with the flow visualization experiments of Spohn et al.
(1998) which report instability at Re ∼ 2000, but they do not detail the nature of
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Figure 7. Measured axial vorticity (contours) and horizontal velocity (arrows), in a deep
system with Γ = 2 and Re= 2500, at depth z below the free surface as indicated.
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Figure 8. Experimentally observed transient states with (a) m= 3 and (b) m= 5 azimuthal
wavenumbers. These contours of axial vorticity and projected velocity vectors were measured
at depth z = −0.24Γ in separate experimental runs with Re= 2200 and Γ = 2.

Figure 9. Measured profiles of the radial and azimuthal velocity, u and v, at the free surface
(z = 0) across the diameter of the surface nominally going through the origin, r =0; the right
half of the plot is at an azimuthal angle θ = 0 and the left half at angle θ = π. The velocities
are non-dimensionalized by ΩR. These correspond to an m= 4 mode at Re =2500 and Γ = 2,
but time-averaging is essentially equivalent to averaging in θ .

the instability nor its physical origin. From our DPIV measurements of the velocity
and corresponding vorticity, it is apparent that the symmetry breaking is due to
an azimuthal instability of the shear layer that is produced by the turning of the
boundary layer on the rotating disk into the interior, and that the central recirculation
zone plays no role in this instability. This is the same physical mechanism identified
in long cylinders (H/R > 2) with a no-slip stationary top (Marques & Lopez 2001;
Blackburn & Lopez 2002).

For the deep system with Γ = 2, our numerical computations of the full problem
(i.e. no imposed restrictions to symmetric subspaces) show very similar dynamics to
the experiments for the primary instability. The basic state remains stable up to about
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Figure 10. Variation with Re of E4 for RW4, and E4 and E2 for RW4,2, computed for Γ = 2.

Re = 1910, at which point it loses stability via a supercritical Hopf bifurcation to an
azimuthal mode with wavenumber m =4. This mode is a rotating wave, RW4. The
symmetry of this state corresponds to type III in the classification in table 1, with
m = 4, s =+1, ∆ =Z4 × Z2 and G/∆ = SO(2). We can monitor its amplitude by the
modal energy contained in wavenumber m = 4. The modal energies are defined to be

Em =
1

2

∫ z=Γ

z=−Γ

∫ θ=2π

θ=0

∫ r=1

r=0

um · ūm r dr dθ dz, (6.1)

where um is the mth Fourier mode of the velocity field. Since the spatial structure
of a rotating wave is invariant in a rotating frame (i.e. precessing with the wave),
the modal energies are time-independent once the rotating wave state is established.
Figure 10 shows E4 for RW4 for various values of Re; the supercritical nature of
the Hopf bifurcation is evident from the linear growth of E4 from zero at about
Re = 1910.

The spatial structure of the Hopf mode leading to RW4 is shown in figure 11. The
figure shows isosurfaces of the m =4 Fourier components of the velocity, at levels
±0.003 for all three components (this is roughly half of the extreme values); the light
(dark) grey isosurfaces are positive (negative). It is clear that u4(r, θ, z) = u4(r, θ, −z),
v4(r, θ, z) = v4(r, θ, −z), and w4(r, θ, z) = −w4(r, θ, −z), so this Hopf mode is reflection
symmetric (Z2) about z = 0, i.e. has even parity in z with s =+1.

In figure 12 contours at various depths of the computed axial vorticity for RW4 at
Re = 1950 are shown. These should be compared with the experimentally determined
axial vorticity in figure 7 for the m =4 state at Re= 2500. Even though there is a
considerable difference in Re between them, the distribution of angular momentum
for the two cases is remarkably similar, indicating that they are essentially the same
state. We say essentially because as we increase Re in the computations, RW4 becomes
unstable, yet the underlying m =4 component of the flow remains predominant.

At about Re = 1990, the rotating wave becomes unstable to an m =2 azimuthal
mode (see the linear growth of E2 for Re > 1990 at the expense of E4 in figure 10). This
instability of the rotating wave RW4 is via a period-doubling bifurcation (rather than
a Neimark–Sacker bifurcation). If it were a Neimark–Sacker bifurcation, the m =4
and m =2 components would have incommensurate ‘precession frequencies’ and the
resultant state would have been a modulated rotating wave whose structure is not
time-invariant in any rotating frame. The structure would have been time-periodic
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Figure 11. Computed isosurfaces of the m= 4 velocity components of RW4 at Re= 1950,
Γ = 2.0 with even z-parity; isolevels at ±0.003.

in a frame rotating at one of the two ‘precession frequencies’ and the modal energies
would also be time-periodic. With a period-doubling bifurcation, the structure is
time-invariant in a rotating frame and the modal energies are also time-independent.
The precession frequency remains the same, and the symmetry of the period-doubled
rotating wave, RW4,2, is still type III but with m = 2, s = +1, ∆ =Z2 × Z2 and
G/∆ = SO(2).

Period doublings have previously been reported in an experiment with a free surface
and Γ = 2 by Young, Sheen & Hwu (1995). They obtained temporal spectra using a
single-point laser-Doppler velocimeter system, although they did not report on the
spatial structure of the instabilities. For Re < 1900, they report only steady flow (the
basic state), then for Re= 1900 and 2100 the spectra show a single frequency peak.
For Re = 2200 and 2300 the spectra has a peak at about the same frequency as in
the lower-Re cases plus another peak at about half that frequency. At higher Re they
observe another period doubling and then more complicated spectra. The Re values
for the first onset of time-periodic flow and then for the first period doubling are
consistent with our computed results.

Figure 13 shows that the growth rate of E2 is very slow near the period-doubling
bifurcation, and this allows us to compute the unstable RW4 state for Re > 1990. In
fact, when one starts a computation from rest with Re � 2000 (RW4 unstable), an
RW4 state is first established which, due to instability, has E2 growing from very
small initial values until it saturates and then the state evolves to RW4,2. Figure 13
shows the temporal evolution of E2 and E4 for Re = 2000 (near onset of RW4,2)
and Re = 2100 (at this higher Re, RW4,2 is itself unstable, see below). For Re= 2000,
RW4,2 is not established until about 2 × 104 time units following the initiation of
the flow; in the physical experiment this corresponds to about 6000 s. For Re= 2100,
the growth rate of E2 is much larger and RW4,2 is established by about t = 5000
(about 1500 s). The Re= 2100 case shown was computed in a Z2-subspace; at about
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Figure 12. Computed axial vorticity of RW4 at Γ =2 and Re= 1950, at z as indicated
(z = 0 is the mid-plane).

Re = 2085, the Z2 symmetric RW4,2 becomes unstable to an m =3 mode that breaks
the Z2 reflection symmetry about z = 0.

The sequence of bifurcations just described over the range Re ∈ [1900, 2100] is
rather complicated and their effect on the solution state is subtle and difficult to
discern. To illustrate this, we plot in figure 14 contours of the radial velocity, u,
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Figure 13. Evolution of E2 and E4 following a start from rest computed for Γ = 2 and
Re= 2000 and 2100.

Figure 14. Computed radial velocity, u, at depth z = −0.25Γ , Γ = 2, for (a) RW4 at Re= 1975,
(b) RW4,2 at Re= 2000, (c) RW4,2 at Re= 2100, and (d) MRW2,3 at Re= 2100. The contour
levels are uniformly spaced in the interval u ∈ [−0.025, 0.025], with 12 positive (solid lines)
and 12 negative (dotted lines) contours, and the zero contour is dashed.

at depth z = −0.25Γ for a number of Re: (a) RW4 at Re = 1975, (b) RW4,2 at
Re= 2000, (c) RW4,2 at Re= 2100, and (d) MRW2,3 at Re = 2100. Comparing (a)
and (b), we see that the period doubling comes about by the central core region
developing an m =2 component which slightly modifies the m =4 outer structure. In
(c), the m =2 component has become significantly more energetic (see energy levels
in figure 10), but the m = 4 outer structure is still predominant. Even in (d), where the
RW4,2 has become unstable to an m = 3 component leading to a modulated rotating
wave, MRW2,3, that is not invariant to any azimuthal rotation, the underlying m = 4
component is clearly predominant. The structure ‘precesses’ at about the same rate
as in (a), but both the structure and the precession are modulated in time. The level
of distortion to RW4 caused by the period-doubling bifurcation and then by the
Neimark–Sacker bifurcation introducing the m = 3 component is relatively small, and
so these states in a physical system would be practically indistinguishable from a
RW4 using either flow visualization or quantitative measurements, such as DPIV with
a typical signal-to-noise ratio of order 102.

The state shown in figure 14(d) is a modulated rotating wave, MRW2,3. The RW4,2

becomes unstable at about Re= 2085 to an m =3 mode. The symmetry of the m = 3
mode (not of the whole solution, MRW2,3, but of the Floquet mode) is of type IV
with m =3, s = −1, ∆ =Z6 and G/∆ = SO(2). The most significant point is that this
mode breaks the Z2 reflection symmetry about z =0. The onset of this mode is via
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Figure 15. Time series of E3 for MRW2,3 states computed for Γ =2 and Re as indicated.

Figure 16. Computed isosurfaces of the m= 4 velocity components of MRW2,3 at
Re= 2100, Γ = 2; isolevels at ±0.003.

a Neimark–Sacker bifurcation from RW4,2, and so the modal energies are now time-
periodic. In figure 15, time series of E3 for MRW2,3 are shown for various Re. For Re
from onset (at about 2090), up to about Re = 2120, E3 is harmonic with a mean that
grows approximately linearly with Re. By Re= 2140, the exchange of energy between
the various components of the flow becomes rather more complicated.

To investigate the structure of the MRW2,3 state at Re = 2100, isosurfaces of the
radial, azimuthal and axial components of the m =4, 2 and 3 Fourier modes of the
velocity are plotted in figures 16, 17 and 18, respectively. The other Fourier modes
(except the m =0 mode) have essentially no energy for this state. Figure 16, showing
the m =4 mode, is very similar to figure 11; there are only minor differences due
primarily to the difference in Re (1950 and 2100), even though figure 11 is for RW4.
The m =4 mode in MRW2,3 is due to the same physical instability mechanism that
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Figure 17. Computed isosurfaces of the m= 2 velocity components of MRW2,3 at
Re= 2100, Γ =2; isolevels at ±0.003.

lead to RW4 described earlier. The m =2 mode, shown in figure 17, has the same
symmetry type in the axial direction as the m =4 modes: they both have even parity
in z with s = +1. The physical mechanism responsible for the m = 2 mode, however, is
quite different to that for the m = 4 mode. The isosurfaces show that the m =2 mode
is closely associated with the recirculation zone attached to z = 0 near the axis (see
figure 3 for an example of the recirculation zone at a lower Re; the structure is not
very different at Re =2100). An analogous secondary instability of the core region in
the flow with a stationary no-slip top at z = 0 was investigated by Marques & Lopez
(2001).

Figure 18 shows the m =3 mode. The isosurfaces indicate that the physical
mechanism is the same as that responsible for the m = 4 mode, i.e. instability of
the jet-shear layer. However, there is a major difference with the m =4 mode in that
the m =3 mode breaks the Z2 reflection symmetry about z =0; the m =3 mode has
odd parity in z with s = −1. From the figure, it is evident that u3 and v3 are odd in z

and w3 is even in z. However, this is a rather degenerate mode in that although w3 is
even in z, w3 still vanishes at z = 0 (to within computational noise). This means that
although the m =3 mode breaks the reflection symmetry about z = 0, the z = 0 plane
continues to be a plane where the complete axial velocity, w, vanishes and so there is
no deformation of this plane. It should be noted that this mode does not exist in a
system with stress-free boundary conditions imposed, even though it does not deform
the interface; this mode has uz, vz different from zero, but still w = 0 at the interface
z = 0. The stress-free conditions impose a hidden Z2 symmetry in z which restricts
solutions to having even parity in z.

6.2. Shallow system: Γ = 0.25

The dynamics in the shallow system are dramatically different to those in the deep
system. In particular, the primary mode of instability from the basic state has odd
parity in z. This odd parity mode has azimuthal wavenumber m = 3, and leads to a
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Figure 18. Computed isosurfaces of the m= 3 velocity components of MRW2,3 at
Re= 2100, Γ = 2; isolevels at ±0.0005.

Figure 19. Computed isosurfaces of m= 3 velocity components of RW3 with odd z-parity at
Re =1500, Γ = 0.25; isolevels at ±0.003.

rotating wave RW3. Figure 19 presents computed isosurfaces of the m =3 component
of velocity of RW3, near onset at Re =1500, from which the odd z-parity is clearly
evident. Notice that in this shallow odd-parity mode, the axial velocity is large at
z = 0. This results in large deformations away from flatness of the w = 0 isosurface;
i.e. the z = 0 mid-plane is no longer a symmetry plane.

A detailed view of RW3 and the m = 3 odd-parity mode is provided in figure 20,
where contours of the axial velocity, w, and its m = 3 Fourier component, w3, are
plotted at various z-levels. From this figure, it is evident that the complete velocity
does not have either odd or even z-parity, i.e. w(r, θ, z, t) �= ±w(r, θ, −z, t), but w3

does have odd z-parity, i.e. w3(r, θ, z, t) =w3(r, θ, −z, t). The symmetry of RW3 is of
type IV in the classification in table 1, with m = 3, s = −1 and ∆ =Z6(K Rπ/3); w3 also
has this spatial symmetry. In figure 20(a), the complete axial velocity, w, appears to
be almost an odd function of z; this is because the basic state w is an odd function of
z and we are very close to the Hopf bifurcation, so the amplitude of the Hopf mode is
relatively small. However, at z =0, where w of the base state is zero, we see that w for
RW3 consists of the corresponding w from the m =3 component, which is non-zero
due to its odd z-parity (note that the contour levels used in parts a and b differ by an
order of magnitude). The figure also indicates that the physical mechanism responsible
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Figure 20. Computed axial velocity, w, and its m= 3 component, w3, in a shallow system
with Γ = 0.25 and Re= 1500 at depths z as indicated. The range of contour levels for w is
±0.15, and for w3 is ±0.018.
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Figure 21. Variation with Re of E3 for RW3, and E3 and E2 for MRW3,2, computed for
Γ = 0.25.

for the primary symmetry breaking is different to the instability of the jet-shear layer
in the deep system. In this shallow system, the mode has maximum magnitude at
mid-depth z = 0 and consists of large undulations in (θ, z) from the cylinder wall at
r = 1 to about mid-radius (see the contours of w3 at z = 0). At mid-radius, r ≈ 0.5, the
large perturbations spread axially in the ±z-directions along the interface between
the solid-body rotation in the inner core and the overturning meridional outer flow
(see figure 2). The physical mechanism leading to this RW3 is the instability of the
radial swirling jet at z =0 formed by the separation of the cylinder wall boundary
layer.

The symmetry-breaking bifurcation leading to RW3 is a supercritical Hopf
bifurcation (of type IV). Figure 21 shows the variation with Re of E3 for RW3,
indicating that for Γ = 0.25, the Hopf bifurcation occurs at Re ≈ 1450. At Re ≈ 2200,
RW3 undergoes a supercritical Neimark–Sacker bifurcation that introduces an m =2
azimuthal mode, leading to a modulated rotating wave MRW3,2.

Much of the dynamics captured by the computations for the extended system with
Γ = 0.25 were also observed in the free-surface experiments. However, the experiments
in this case were much more difficult to reproduce than those in the deep system
(Γ = 2.0). Specifically, when nearly perfect experimental conditions were achieved,
in terms of water level (initially flat interface) and cleanliness of the container and
water, then an m =3 mode rotating wave was observed. At Re= 2000, the m =3
wave becomes evident shortly after the base flow is established, and it remains the
dominant mode for the duration of the experiments, which lasted up to 2 hours
(corresponding to over 3500 rotations of the endwall). Apart from needing nearly
perfect initial conditions, the experiments in which the robust m =3 rotating wave
were observed also required very low levels of vibration in the laboratory and thus
had to be run late in the evening. On the other hand, if lower quality water (with a
larger amount of surface-active contaminants) was used, then an m =2 rotating wave
was observed shortly after start up, and it persisted.

The results of DPIV measurements showing the axial vorticity of the m =3
rotating wave (together with projected velocity vectors) at Re = 2000 are presented in
figure 22 (a). The structure of the flow at mid-depth (z = −0.5Γ ) is very similar to the
computed RW3 of the extended system, shown in part (b) of the figure. This suggests
that the mode breaking the axisymmetry in the experiment is the same as that in the
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Figure 22. Comparison between experimentally measured and computed z-vorticity at the
interface (z =0) and at mid-depth (z = −0.5Γ ) for RW3 at Re= 2000 and Γ = 0.25.

computations. However, the computed RW3 at z = 0 is fundamentally different from
the measurements at the free surface. The computed mode has odd z-parity, and this
mode does not exist in a system with a flat stress-free interface at z =0 (we computed
it only in the extended system without any imposed conditions at z =0). So, that this
mode is present in the physical experiment is only possible because the air/water
interface is not perfectly flat and stress-free.

The imperfections in the free-surface experiments due to surface-active contami-
nants and the resultant shear stress at the interface are not easy to quantify, since
we had taken all practical steps to minimize contaminants and no surfactants
were intentionally added. However, the imperfections due to departures from a flat
air/water interface are straightforward to measure, at least in the mean. A laser probe
was utilized, where the beam from a He-Ne laser was directed up from the rotating
glass bottom endwall and the refraction of the beam was used to determine the local
slope of the air/water interface. The distribution of the free-surface slope, averaged
in time (which for a rotating wave state is equivalent to averaging in θ), as a function
of scaled radial distance from the axis, r , is shown in figure 23(a). Although there
is scatter in the data, the general trend is as expected, with essentially zero slope at
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Figure 23. (a) Measured mean slope of the surface obtained using a laser gauge (filled circles)
and a quadratic fit to the data (solid line: slope(r) = 0.0237r − 0.0176r2) for the flow in a
shallow system with Γ = 0.26 at Re= 2000 with Fr = 0.091. (b) Mean deformation of the free
surface (scaled by the radius, 25 mm), estimated from the surface slope fit (solid line) with
zero deformation at r = 1: deformation(r) = 0.01185r2 −0.005867r3 −0.00598, and free-surface
deformation for solid-body rotation in a rotating cylinder (Lugt 1996).

the axis. Since the meniscus is effectively pinned at the cylinder wall, r = 1 (water
wets the wall of the stationary cylinder but not the hydrophilic coated top rim of the
cylinder), a finite slope is to be expected at r = 1. The surface deformation, computed
by integration of the curve fit to the slope data, is presented in figure 23(b). Since the
interface was initially flat, a deficit in the volume of liquid in the cylinder is apparent
from the data. This missing volume of fluid has most likely been transferred to the
region between the stationary cylinder at r = 1 and the outer (rotating) cylindrical
container (see figure 1) through the finite gap (about 0.07 mm) between the stationary
cylinder at r = 1 and the rotating bottom endwall at z = −Γ . For comparison, the
shape of the interface in the case of solid-body rotation (flow in a rotating cylinder
with a free surface, e.g. see Lugt 1996) is also plotted as a dashed line in figure 23(b).
As expected, the maximum deformation is smaller in the case of a stationary cylinder
with a rotating endwall than in the rotating cylinder, due to the secondary meridional
flow with inward radial flow at the air/water interface. In the experiments, Fr is
small but finite (Fr = Ω2R2/gH = 0.091, where g is the gravitational acceleration),
whereas in the computations of the extended system Fr is essentially infinite.
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7. Concluding remarks
Modelling this simple free-surface flow in a stationary cylinder, which is driven

by the rotation of a bottom endwall, with a flat stress-free interface is fine for the
(axisymmetric) basic state because the basic state has even z-parity. As long as the
imperfections in the physical system are small, they do not qualitatively affect the
flow.

The physical mechanisms responsible for the primary instabilities of the basic state
observed in the deep (Γ = 2) and shallow (Γ = 0.25) cases are different. In the deep
case the instability is due to the jet-like shear layer, formed by the turning of the
rotating endwall boundary layer into the interior, becoming unstable. In contrast,
for the shallow case the region between the core (in solid-body rotation) and the
overturning meridional flow becomes unstable to azimuthal disturbances.

In the deep system (Γ =2), the basic state loses stability to a mode with even
z-parity, so the imperfections in the physical free-surface experiment do not quali-
tatively change the dynamics and we find quantitative agreement for the primary
symmetry-breaking instability between the experiments and computations with an
imposed flat stress-free interface.

In the shallow system (Γ = 0.25), the primary instability mode has odd z-parity.
In the computational model, this mode only exists when odd z-parity is permitted.
The flat stress-free boundary condition imposes a hidden symmetry, restricting the
solution to an even z-parity subspace. We are able to compute the odd z-parity
primary mode in an extended system that does not impose parity conditions. In the
experiment, although we attempted to achieve a flat stress-free interface, this is not
possible due to imperfections, including Froude number and surfactant Marangoni
effects, and so the experiment does not have any z-parity restriction. The basic state
spontaneously loses stability to the odd z-parity mode at the critical Re. The computed
RW3 that bifurcates cannot truly represent the physical system because w �= 0 at
z = 0; but neither can the stress-free model. Due to the presence of imperfections
in the experiment (non-flat surface, surfactants and the corresponding stresses), the
physical flow does not posses the hidden symmetry implied by the stress-free boundary
conditions. Nevertheless, away from z = 0, the computed RW3 resembles strikingly
well the observed experimental flow, and captures in detail the complicated structure,
so it is a better model than the stress-free model. The differences in this mode between
the computations and experiments are in the region near the interface.
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